PROGRAMME DE COOPÉRATION TRANSFRONTALIÈRE

GRENSOVERSCHRIJDEND SAMENWERKINKSPROGRAMMA

GoToS3

Elasto-Plast

Elasto-plast

Van conventionele tot slimme thermoplastische elastomeren

Les élastomères thermoplastiques, depuis les conventionnels à ceux de seconde génération

24.01.17

AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL MET STEUN VAN HET EUROPEES FONDS VOOR REGIONALE ONTWIKKELING

GoToS3 **Elasto-Plast**

Partners Partenaires

Geassocieerde partners **Partenaires** associés

<u>Thermoplasten</u> <u>Matériaux thermoplastiques</u>

<u>Gevulkaniseerde elastomeren</u> <u>Matériaux caoutchoutés vulcanisés</u>

- Verwerkbaarheid La malléabilité
- Treksterkte

 La résistance à la traction
- Breuksterkte La ténacité

- Flexibiliteit
 La flexibilité
- Elasticiteit *l'éElasticité*
- Taaiheid

 La ductilité

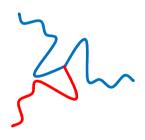
<u>Thermoplastische elastomeren (TPE)</u> <u>Les elastomères thermoplastiques (TPE)</u>

> Harde segmenten: thermoplast, fysische knooppunten Les segments durs : matériaux thermoplastiques, la réticulation physique

Zachte segmenten: elastomeer
 Les segments mous : matériaux caoutchoutés

GoToS3

Elasto-Plast



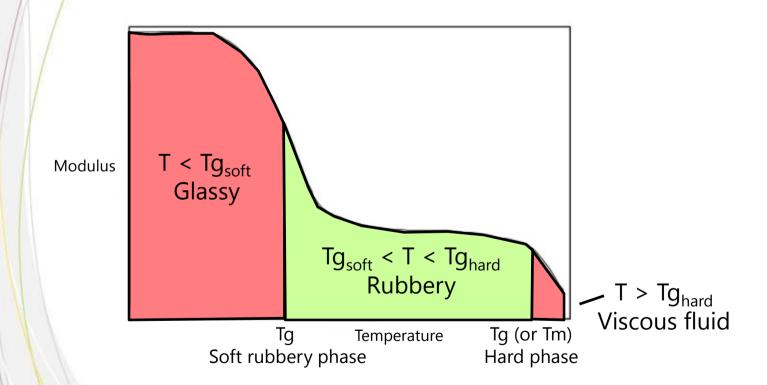
Les élastomères thermoplastiques (TPE)

ABC triblock

ABA triblock

Mixed arm star block

 $(AB)_n$ star


Cyclic AB diblock

Blends of different polymers

сотоsз Elasto-Plast

Gebruikstemperatuur van TPEs La température de service des TPEs

Voordelen t.o.v. (thermoset) elastomeren

- Eenvoudiger te verwerken
- Hergebruiken van gegenereerde scrap
- Kortere verwerkingstijden
- Lager energieverbruik door korte verwerkingstijden

Lagere kosten

 Beter geschikt voor medische toepassingen en contact met voeding

Les avantages de TPEs contre les matériaux caoutchoutés

- Plus facile à mettre en oeuvre
- La réutilisation du granulat généré
- Les délais de traitement plus courts
- La consommation d'énergie plus basse grâce aux délais de traitement plus courts

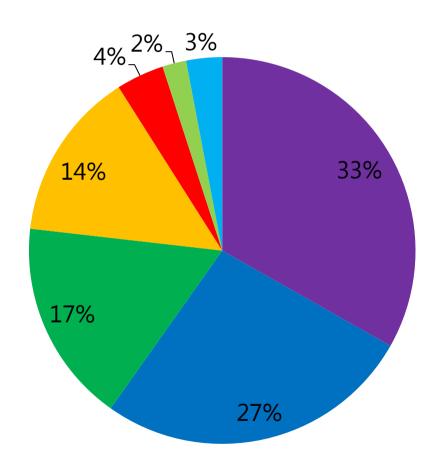
Le prix plus abordable

 Convient aux applications médicales et au contact avec la nourriture

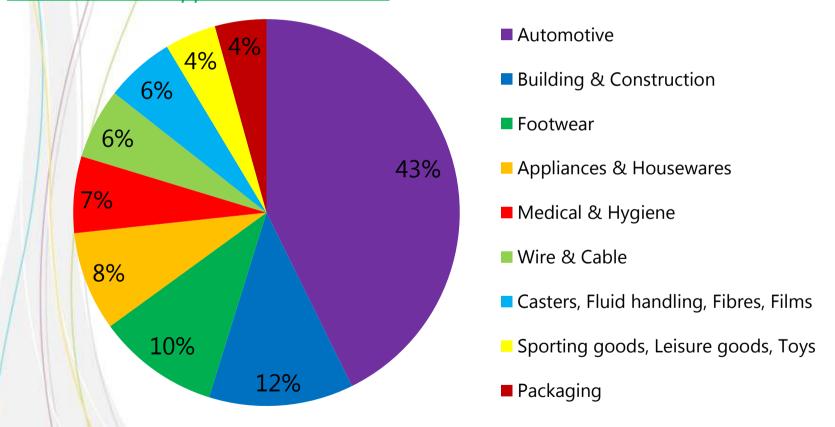
Nadelen t.o.v. (thermoset) elastomeren

- Gelimiteerd gebruik van TPEs op hoge temperaturen
- Gelimiteerde hoeveelheid TPEs met een lage hardheid
- Verschillende TPEs moeten gedroogd worden voor gebruik

<u>Les désavantages de TPEs contre les</u> <u>matériaux caoutchoutés</u>


- L'utilisation limitée des TPEs aux températures élevées
- La quantité limitée de TPEs avec une dureté basse
- Plusieurs TPEs doivent être séchés avant utilisation

сотоsз Elasto-Plast


<u>Classificatie TPEs</u> <u>La classification de TPEs</u>

- Styrenic TPE (TPS)
- Olefinic TPE (TPO)
- Dynamically vulcanized TPE (TPV)
- Urethane TPE (TPU)
- Copolyester TPE (TPC)
- Polyamide TPE (TPA)
- Miscellaneous material (TPZ)

Toepassingsgebieden van TPEs Les domaines d'applications des TPEs

Overview

- Styreen-gebaseerde TPEs les TPEs styréniques (TPS)
- Dynamisch gevulkaniseerde TPEs les TPEs vulcanisés (TPV)
- Polyolefine-gebaseerde TPEs les TPEs oléfiniques (TPO)
- Polyurethaan-gebaseerde TPEs les TPEs de polyuréthane (TPU)
- Polyamide-gebaseerde TPEs les copolyamides thermoplastiques (TPA)
- Polyether ester TPEs les copolyesters thermoplastiques (TPC)
- Andere soorten TPEs les autres TPEs (TPZ)

A-B-A blok copolymeren: A = polystyreen, B = elastomeer (polydieen) Les A-B-A blocs copolymères styréniques : A = polystyrène, B = matériaux caoutchoutés (polydiènes)

B A Hard segment: thermoplast Zacht segment: elastomeer Hard segment: thermoplast Le segment dur : matériaux Le segment dur : matériaux Le segment mou : matériaux thermoplastiques caoutchoutés thermoplastiques 2 Tgs 1 Tg Morfologie van TPS La morphologie des TPS Spheres Cylinders Lamellae Cylinders Spheres Increasing A-Content Decreasing B - Content

A-B-A blok copolymeren: A = polystyreen, B = elastomeer (polydieen) Les A-B-A blocs copolymères styréniques : A = polystyrène, B = matériaux caoutchoutés (polydiènes)

	Hard segment: thermoplast Le segment dur : matériaux thermoplastiques	Zacht segment: elastomeer Le segment mou : matériaux caoutchoutés	Hard segment: thermoplast Le segment dur : matériaux thermoplastiques
TPS - S	TS	Polyisoprene	
115-5	Polystyrene	Tg = -60 °C	Polystyrene
TDC C	Tg = 100 °C	Polybutadiene	Tg = 100 °C
TPS - S	BS	Tg = -90 °C	

<u>Eigenschappen van TPS</u> <u>Les propriétés des TPS</u>

Algemene eigenschappen

- TPS gedragen zich als thermoset rubbers,
 op kamertemperatuur
- Hoge treksterkte (> 28 Mpa)
- Hoge breukrek (>800 %)
- Enorme range aan beschikbare hardheden

Les propriétés générales

- Aux températures ambientes : les TPE se comportent comme les matériaux caoutchoutés
- Résistance à la traction élevée (> 28 MPa)
- Grande déformation (> 800 %)
- Une gamme large de duretés disponibles

A-B-A blok copolymeren: A = polystyreen, B = elastomeer (polydieen) Les A-B-A blocs copolymères styréniques : A = polystyrène, B = matériaux caoutchoutés (polydiènes)

Hard segment: thermoplast Le segment dur : matériaux thermoplastiques Zacht segment: elastomeer Le segment mou : matériaux caoutchoutés Hard segment: thermoplast Le segment dur : matériaux thermoplastiques

TPS - SIBS

Polystyrene

 $Tg = 100 \, ^{\circ}C$

Polyisobutylene:

 $Tg = -60 \, ^{\circ}C$

Polystyrene

Tg = 100 °C

<u>Eigenschappen van TPS</u> <u>Les propriétés de TPS</u>

Eigenschappen van SIBS

- Zachtste TPS
- Lage resiliëntie
- Sterke mechanische demping → vibraties absorberen
- Hoge thermische stabiliteit
- Goede lage temperatuur eigenschappen door lage Tg IB blok (- 70°C)
- Lage gaspermeabiliteit

Les propriétés de SIBS

- TPS le plus mous
- La résilience peu élevée
- La ductilité → absorber les chocs
- La stabilité thermique élevée
- De bonnes propriétés aux températures basses grâce à la Tg de block IB faible
- La perméabilité de gaz peu élevée

A-B-A blok copolymeren: A = polystyreen, B = elastomeer (polydieen) Les A-B-A blocs copolymères styréniques : A = polystyrène, B = matériaux caoutchoutés (polydiènes)

Hard segment: thermoplast Le segment dur : matériaux thermoplastiques Zacht segment: elastomeer Le segment mou : matériaux caoutchoutés Hard segment: thermoplast Le segment dur : matériaux thermoplastiques

TPS - SEBS

Poly(Ethylene-Butylene):

 $Tg = -55 \,^{\circ}C$

TPS - SEPS

Polystyrene

Poly(ethylene-propylene):

Polystyrene

 $Tg = 100 \, ^{\circ}C$

 $Tg = 100 \, ^{\circ}C$

TPS - SEEPS

Poly(ethylene-ethylene-propylene)

<u>Eigenschappen van TPS</u> <u>Les propriétés de TPS</u>

Eigenschappen van SEBS, SEPS, SEEPS

- Betere thermische en oxidatieve weerstand dan SBS, SIS
- Hoge weerstand tegen hydrolyse en meeste verdunde zuren en basen
- Hardste TPS
- Sterkte SEPS > sterkte SEBS
- Treksterkte SEEPS > treksterkte SEBS/SEPS

Les propriétés de SEBS, SEPS, SEEPS

- Meilleure résistance thermique et à l'oxydation que les SBS, SIS
- La résistance à l'hydrolyse, aux acides et bases élevée
- TPS les plus durs
- La résistance de SEPS > la résistance de SEBS
- La résistance à la traction de SEEPS > la résistance à la traction de SEBS/SEPS

Сотоs3 Elasto-Plast

Overview

- Styreen-gebaseerde TPEs les TPEs styréniques (TPS)
- Dynamisch gevulkaniseerde TPEs les TPEs vulcanisés (TPV)
- Polyolefine-gebaseerde TPEs les TPEs oléfiniques (TPO)
- Polyurethaan-gebaseerde TPEs les TPEs de polyuréthane (TPU)
- Polyamide-gebaseerde TPEs les copolyamides thermoplastiques (TPA)
- Polyether ester TPEs les copolyesters thermoplastiques (TPC)
- Andere soorten TPEs les autres TPEs (TPZ)

Blends van een (gevulkaniseerd) elastomeer en een thermoplast Les mélanges de matériaux caoutchoutés (vulcanisés) et thermoplastiques

Voordelen t.o.v. blokcopolymeren*

- Lagere blijvende vervorming
- Betere mechanische eigenschappen
- Hogere weerstand tegen vermoeiing
- Minder zwellen in vloeistoffen
- Hogere smeltsterkte
- Hogere bruikbaarheid bij hogere temperaturen
- Stabielere fase-morfologie in de smelt

Les avantages contre les copolymères de blocs*

- Déformation plus faible
- Meilleures propriétés mécaniques
- Résistance à la fatigue élevée
- Gonflement plus faible
- Résistance de fusion élevée
- Meilleure résistance aux températures élevées
- Morphologie des phases plus stable à l'état fondu

^{*} Enkel bij optimale eigenschappen, waarbij: a) de elastomeerpartikels klein genoeg zijn en b) bij volledige vulkanisering

^{*} Seulement aux propriétés optimales où : a) les particles caoutchoutés sont assez petites et b) la vulcanisation est complète

Blends van een (gevulkaniseerd) elastomeer en een thermoplast Les mélanges de matériaux caoutchoutés (vulcanisés) et thermoplastiques

Statische vulkanisatie van rubbers

Rubber:

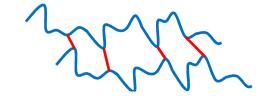
- Elastisch
- Plakkerig
- Zwakke eigenschappen

Vulkanisering:

- Cross-links (-)
- Elastisch tot hard
- Niet plakkerig
- Eigenschappen 1

<u>La vulcanisation statique des matériaux</u> <u>caoutchoutés</u>

Les matériaux caoutchoutés


- Élastique
- Collant
- Propriétés plus faibles

La vulcanisation:

- Réticulation
- Matériaux élastiques jusqu'aux matériaux durs
- Non collant
- Propriétés élevées

irréversible

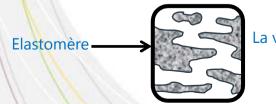
S8, peroxides ...

Blends van een (gevulkaniseerd) elastomeer en een thermoplast Les mélanges de matériaux caoutchoutés (vulcanisés) et thermoplastiques

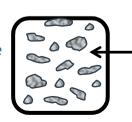
Dynamische vulkanisatie

- 1) Mengen van elastomeer en thermoplast (mixer)
- 2) + vulkaniseringsagentia → vernetting + verharding

Verschil met statische vulkanisatie:


- Verwerkbaar als thermoplast
- Betere eigenschappen
- Hardheid bepaald door hoeveelheid thermoplast

La vulcanisation dynamique


- 1) Le mélange de matériaux caoutchoutés et thermoplastiques
- 2) Addition des agents vulcanisants lors du mélanger → réticulation réversible et durcissement du mélange

La différence avec la vulcanisation statique :

- Utilisation comme des matériaux thermoplastiques
- Propriétés élevées
- La quantité de thermoplastique détermine la dureté

La vulcanisation dynamique

Thermoplastique

Blends van een (gevulkaniseerd) elastomeer en een thermoplast Les mélanges de matériaux caoutchoutés (vulcanisés) et thermoplastiques

Types TPV

Polyolefine-gebaseerde TPV

- Polyolefine-EPDM blends
- Polyolefine-dieen rubber blend:
 - Butadieenrubber
 - Natuurlijk rubber (NR)
 - Nitrilrubber (NBR)
 - Styreen-butadieen rubber (SBR)
 - Butyl/halobutyl rubber

Polyamide-gebaseerde TPV

- PA-NBR
- PA-ACM

Les genres de TPV

Les TPV oléfiniques

- La mélange de polyolefines et EPDM
- La mélange de polyolefines et les diènes
 - Caoutchoucs de polybutadiène
 - Caoutchoucs naturel (NR)
 - Caoutchoucs nitrile (NBR)
 - Caoutchoucs de styrène-butadiène (SBR)
 - Caoutchoucs de butyl/halobutyl

Les polyamide TPV

- PA-NBR
- PA-ACM

Blends van een (gevulkaniseerd) elastomeer en een thermoplast Les mélanges de matériaux caoutchoutés (vulcanisés) et thermoplastiques

<u>Eigenschappen</u>

- Hoge trek/rek-eigenschappen
- Betere thermische stabiliteit dan standaard thermoharders
- Resistentie tegen ozon
- Lage gas- en vochtpermeabiliteit
- Resistentie tegen olie op verhoogde temperaturen (150 °C)

Les propriétés

- Résistances à la traction et à l'allongement élevées
- Stabilité thermique meilleure que celle des matériaux thermodurcissables
- Résistance à l'ozone
- Perméabilités aux gaz et à l'humidité peu élevées
- Bonne résistance aux huiles aux températures élevées

Сотоs3 Elasto-Plast

Overview

- Styreen-gebaseerde TPEs les TPEs styréniques (TPS)
- Dynamisch gevulkaniseerde TPEs les TPEs vulcanisés (TPV)
- Polyolefine-gebaseerde TPEs les TPEs oléfiniques (TPO)
- Polyurethaan-gebaseerde TPEs les TPEs de polyuréthane (TPU)
- Polyamide-gebaseerde TPEs les copolyamides thermoplastiques (TPA)
- Polyether ester TPEs les copolyesters thermoplastiques (TPC)
- Andere soorten TPEs les autres TPEs (TPZ)

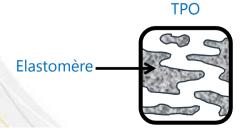
Polyolefine-gebaseerde TPEs (TPO) *Les TPEs oléfiniques(TPO)*

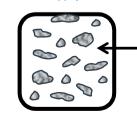
Mechanische blends van een polyolefine en een elastomeer Les mélanges mécaniques de matériaux caoutchoutés et thermoplastiques oléfiniques

Mechanische blends (TPO)

- Co-continue fases (geen cross-links)
- Mengen van beide polymeren in highshear compounder

Dynamisch gevulkaniseerde blends (TPV)


- Elastomeer: cross-links gevormd: discontinue fase gedispergeerd in olefine continue fase
- Mengen van beide polymeren + vulkaniseringsagentia


Les mélanges mécaniques (TPO)

- Les phases co-continues (pas de réticulation)
- Les mélanges de polymères par fort cisaillement

Les mélanges vulcanisées dynamiques (TPV)

- Les matériaux caoutchoutés réticulés : la phase discontinue dispersée dans une phase continue (oléfinique)
- Les mélanges continus de polymères, addition des agents vulcanisants
 TPV

Thermoplastique

Polyolefine-gebaseerde TPEs (TPO) *Les TPEs oléfiniques (TPO)*

Mechanische blends van een polyolefine en een elastomeer Les mélanges mécaniques de matériaux caoutchoutés et thermoplastiques oléfiniques

Isotactisch PP + EPM/EPDM

PP isotactique + EPM/EPDM

<u>Eigenschappen</u>

- Nuttige eigenschappen blijven behouden tot 140 °C
- Resistent tegen ozon, zonlicht en weersomstandigheden
- Resistent tegen zuren en basen
- Lage adhesie-eigenschappen
- Goede elektrische isolatoren

Les propriétés

- Les propriétés utiles conservées jusqu'à 140 °C
- La résistance à l'ozone, à la lumière du soleil et aux intempéries
- La résistance aux acides et aux bases
- Les propriétés d'adhésion peu élevées
- Les propriétés d'isolation électrique bonnes

Polyolefine-gebaseerde TPEs (TPO) Les TPEs oléfiniques (TPO)

Сотоsз Elasto-Plast

Overview

- Styreen-gebaseerde TPEs les TPEs styréniques (TPS)
- Dynamisch gevulkaniseerde TPEs les TPEs vulcanisés (TPV)
- Polyolefine-gebaseerde TPEs les TPEs oléfiniques (TPO)
- Polyurethaan-gebaseerde TPEs les TPEs de polyuréthane (TPU)
- Polyamide-gebaseerde TPEs les copolyamides thermoplastiques (TPA)
- Polyether ester TPEs les copolyesters thermoplastiques (TPC)
- Andere soorten TPEs les autres TPEs (TPZ)

Polyurethaan-gebaseerde TPEs (TPU) *Les TPEs de polyuréthane (TPU)*

Multiblok copolymeren met fasescheiding Les copolymères multiblocs à la séparation de phases

Harde segmenten

Ketenverlenger: -

• Ethylene glycol, 1,4-butaandiol, 1,6-hexaandiol ...

<u>Isocyanaten:</u> —

 Difenylmethaan-4,4'-diisocyanaat (MDI), Hexamethyleendiisocyanaat (HDI) ...

Zachte segmenten ~~~

Flexibel polyether/polyester met hydroxyluiteindes:

Adipaten, polycaprolacton, alifatische polycarbonaten ...

<u>Les segments durs</u> •

Les espaceurs

• Éthylène glycol, butane-1,4-diol, hexane-1,6-diol

Les isocyanates —

• 4,4'-diisocyanate de diphénylméthylène (MDI), diisocyanate d'hexaméthylène (HDI) ...

<u>Les segments mous</u>

Les polyéthers/polyesters flexibles avec groupe terminal d'hydroxyle:

• Les adipates, polycaprolactone, les polycarbonates aliphatiques

Polyurethaan-gebaseerde TPEs (TPU) Les TPEs de polyuréthane (TPU)

Multiblok copolymeren met fasescheiding Les copolymères multiblocs à la séparation de phases

<u>Eigenschappen</u>	Les propriétés	
Polyester: goedkoper, betere mechanische eigenschappen	les polyesters : plus abordables, les propriétés mécaniques élevées	
Polyether: hogere weerstand tegen hydrolyse, hogere flexibiliteit op lage T	Les polyéthers : résistance à l'hydrolyse plus élevée, flexibilité aux températures basses élevée	
 Uitzonderlijke resistentie tegen scheuren en abrasie 	 Résistances à la rupture et à l'abrasion exceptionnelles 	
Hoge trek- en reksterkte	 Propriétés en traction et à l'allongement bonnes 	
Hoge mechanische demping	Amortissement mécanique augmenté	
 Resistent tegen oliën, vetten en apolaire solventen 	 Résistants aux huiles, aux huiles d'ensimage et aux solvants apolaires 32 	

Polyurethaan-gebaseerde TPEs (TPU) Les TPEs de polyuréthane (TPU)

СотоS3 Elasto-Plast

Overview

- Styreen-gebaseerde TPEs les TPEs styréniques (TPS)
- Dynamisch gevulkaniseerde TPEs les TPEs vulcanisés (TPV)
- Polyolefine-gebaseerde TPEs les TPEs oléfiniques (TPO)
- Polyurethaan-gebaseerde TPEs les TPEs de polyuréthane (TPU)
- Polyamide-gebaseerde TPEs les copolyamides thermoplastiques (TPA)
- Polyether ester TPEs les copolyesters thermoplastiques (TPC)
- Andere soorten TPEs les autres TPEs (TPZ)

Polyamide-gebaseerde TPEs (TPA) Les copolyamides thermoplastiques (TPA)

Gesegmenteerde blokcopolymeren Copolymères à blocs segmentés

Polyether-block-amides (PE-b-A), polyesteramides (PEA), polyetheresteramides (PEEA), Polycarbonaatesteramides (PCEA)

Harde segmenten ———

- Aliphatische polyamides
- Semi-aromatische polyamides

Zachte segmenten ~~~

- Polyether of polyether glycol
- Alifatische polyesters/polyesters
- Alifatische polycarbonaten

Polyéther-bloc-amides (PE-b-A), polyesteramides (PEA), polyétheresteramides (PEEA), polycarbonateesteramides (PCEA)

Les segments durs ———

- Les polyamides aliphatiques
- Les polyamides semi-aromatiques

Les segments mous ~~~

- Les polyéthers ou les polyéthers glycols
- Les polyesters/les polyéthers aliphatiques
- Les polycarbonates aliphatiques

Polyamide-gebaseerde TPEs (TPA) Les copolyamides thermoplastiques (TPA)

Gesegmenteerde blokcopolymeren Copolymères à blocs segmentés

<u>Eigenschappen</u>

- Hoge initiële Young's modulus
- Hoge weerstand tegen verhoogde temperaturen
- Weerstand tegen abrasie vergelijkbaar met TPU en TPC
- Zeer goede resistentie tegen oliën, vetten, brandstoffen, hydraulische vloeistoffen

Propriétés

- Module de Young initial élevé
- Résistance aux températures hautes élevée
- Résistance à l'abrasion au niveau de TPU et TPC
- La très bonne résistance aux huiles, aux huiles d'ensimage, aux carburants, aux fluides hydrauliques

Polyamide-gebaseerde TPEs (TPA) Les copolyamides thermoplastiques (TPA)

Elasto-Plast

Overview

- Styreen-gebaseerde TPEs les TPEs styréniques (TPS)
- Dynamisch gevulkaniseerde TPEs les TPEs vulcanisés (TPV)
- Polyolefine-gebaseerde TPEs les TPEs oléfiniques (TPO)
- Polyurethaan-gebaseerde TPEs les TPEs de polyuréthane (TPU)
- Polyamide-gebaseerde TPEs les copolyamides thermoplastiques (TPA)
- Polyether ester TPEs les copolyesters thermoplastiques (TPC)
- Andere soorten TPEs les autres TPEs (TPZ)

Polyether ester TPEs (TPC) Les copolyester thermoplastiques (TPC)

Gesegmenteerde blokcopolymeren Copolymères à blocs segmentés

Harde segmenten ———

Korte-keten esters: terephtalaten

Zachte segmenten ~~

 Afgeleid van alifatische polyether en polyesterglycolen

Engineering TPEs

Les segments durs

• Les esters chaînes courts: les téréphtalates

Les segments mous

 Dérivés de polyéthers aliphatiques et de polyétherglycols

TPEs techniques

Polyether ester TPEs (TPC) Les copolyester thermoplastiques (TPC)

Gesegmenteerde blokcopolymeren Copolymères à blocs segmentés

Eigenschappen

- Hoge resistentie tegen kruip
- Weerstaan hoge belasting voor langere periodes, zonder spanningsrelaxatie
- Meerdere repeterende cycli van spanning en compressie, zonder verlies aan mechanische eigenschappen
- Uitstekende vermoeiingsweerstand
- Hoge impactweerstand
- Resistent tegen straling (≤ 150 kGy)

Les propriétés

- Résistance au fluage élevée
- Résistance aux pressions de longues periodes, sans relaxation de contrainte
- Plusieurs cycles de contrainte et compression sans perte des propriétés mecaniques
- Résistance à la fatique excellente
- Résistance à l'impact élevée
- Résistance au rayonnement (≤ 150 kGy)

Polyether ester TPEs (TPC) Les copolyester thermoplastiques (TPC)

Goтosз Elasto-Plast

Overview

- Styreen-gebaseerde TPEs les TPEs styréniques (TPS)
- Dynamisch gevulkaniseerde TPEs les TPEs vulcanisés (TPV)
- Polyolefine-gebaseerde TPEs les TPEs oléfiniques (TPO)
- Polyurethaan-gebaseerde TPEs les TPEs de polyuréthane (TPU)
- Polyamide-gebaseerde TPEs les copolyamides thermoplastiques (TPA)
- Polyether ester TPEs les copolyesters thermoplastiques (TPC)
- Andere soorten TPEs les autres TPEs (TPZ)

Andere soorten TPEs (TPZ) Les autres TPEs (TPZ)

TPEs blends gebaseerd op halogeen-gebaseerde polyolefines Les mélanges de matériaux caoutchoutés (vulcanisé) et polyoléfines halogéniques

Soorten

- PVC + NBR
- PVC + TPU
- PVC + TPC

<u>Eigenschappen</u>

- Vlamvertragende eigenschappen
- Weerstand tegen zwellen
- Impactresistentie
- Hoge treksterkte
- Goede chemische resistentie

Types

- PVC + NBR
- PVC + TPU
- PVC + TPC

Les propriétés

- Résistance à la flamme
- Résistance au gonflement
- Résistance a l'impact
- Résistance à la traction élevée
- Bonne résistance chimique

Andere soorten TPEs (TPZ) Les autres TPEs (TPZ)

сотоsз Elasto-Plast

270

TPEs gebaseerd op ionomeren Les TPEs ionomériques

<u>Harde segmenten</u> —

Koolwaterstof backbone

Zachte segmenten —

Ionische verbindingen

<u>Eigenschappen</u>

- Taaiheid
- Hoge smeltviscositeit
- Uitstekende abrasieweerstand
- Hoge treksterkte

<u>Les segments durs</u> —

• La chaîne principale de hydrocarbure

<u>Les segments mous</u> —

• Les combinaisons ioniques

Les propriétés

- Ténacité
- Viscosité de fusion élevée
- Résistance à l'abrasion excéllente
- Résistance à la traction élevée

Andere soorten TPEs (TPZ) Les autres TPEs (TPZ)

GoToS3
Elasto-Plast



Performance

Prijs-performantie verschillende TPEs Prix/performance des différents TPEs

Ontwikkelingen *Les développements*

<u>Ontwikkelingen</u>

- Het gebruik van biogebaseerde materialen: lignine, PLA, cellulose ...
- Nieuwe polyester-polyolen voor TPUs: betere weersbestendigheid
- Stervormige blokcopolymeren
- Polyacrylaat TPEs
- Shape memory
- Weerstand tegen hogere temperaturen
- Betere brandvertragende eigenschappen
- Artificiële implantaten
- Drug delivery

Les développements

- Utilisation des biomatériaux: lignine, PLA, cellulose ...
- Les nouveaux polyester-polyols (TPUs): la résistance aux intempéries
- Les copolymères étoilés
- Les TPEs de polyacrylates
- Les matériaux à mémoire de forme
- La résistance aux températures élevées
- Les propriétés anti-feu élevées
- Les implants artificiels
- Libération controlée de médicaments

•

сотоsз Elasto-Plast